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ABSTRACT

The dynamics of the frictional force between the bow hair
and the string forces the bow to oscillate in its longitudinal
directicn during the stroke. Under certain conditions, such
bow oscillations can be observed in the force spectrum of the
string, and also in the velocity spectrum of the bridge. The
present work discusses the conditions necessary for such an
interaction to be noticeable. Furthermore, the influence of
bridge resenances on the spectrum of the frictional force is
examined. This analysis is based on computer simulations in
combination with observations of real bows played by a
bowing machine.

1. INTRODUCTION AND OVERVIEW
Every string player "knows" that "different bows
produce different sounds on the instrument”. Also,
"some bows are easier to play than others". The
explanation to such statements could be searched
for in the small fluctuations of velocity which the
bow hair makes with respect to the inert "bow
velocity” performed by the player. As this paper
will show, these fluctuations indeed exist, but
there is no simple relation between their
magnitudes and their impact on the string force
spectrum at the bridge: the transfer function is
composed of several elements, some of which
shall be examined here.

1.1 Bow resonances

Bow resonances have been reported by
Schumacher [1] and others. Such resonances are
initiated by changes in the frictional force, which
are present during all of the fundamental period,
but most significantly during the static-friction part
of it, and the transitions between
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Figure 1: During a steady-state stroke with velocity 20cm/s
and bow force 800mN, the bow hair fluctuates with
amplitudes up to 1.5 cm/s, Frequencies lower than the
string's fundamental are evidently present.

frictional forms (slip/stick). The bow resonances
will couple to the string resonances and may
transmit, reflect and/or absorb some part of the
arriving energy, depending on their admittance
ratios.

1.2 Bow and string admittances

During the stick (static-friction) interval, the
frictional force works on three admittances in
mechanical series: the frequency-dependent
admittance of the bow, and the transverse and
torsional admittances on a string with reflecting
terminations. The ratios of these vary grossly with
frequency. A simple equation for point admittance
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of a string with reflecting terminations can be
expressed as shown below, provided the reflection
functions adjust for all losses during propagation
in the string (Guettler [2]):

Y(r, jo) = = R
2Z [ 1+R (jw) e FoC
-1
: - -1 W
1+RN'UTU('O) e -fo2(L-X)/C }
where:
Y(x, jw) = string point admittance.
¥4 = characteristic wave resistance of the string.
x = distance from bridge to point of excitation,
L = length of the string.
© = angular frequency (2xf).
C = wave velocity.
Ry(jw) = reflection at the bridge.
Rynjw) = reflection at the nut.

When comparing a transverse system of high Q-
value modes to a low-Q-value torsional system,
the point-admittance curve of the latter converges
much faster (toward half the characteristic wave
admittance) in the high-frequency end. This
implies greater torsional influence on the string
surface admittance (Ygy + Yior) at the low
frequency harmonics.

1.3 Bridge/string transfer function.
The function of velocity transference from one
arbitrary point on the string to the bridge can
(respecting the conditions of Eq.1) be expressed
by (Guettler [2]):
VaR(©)  [Rpgljw)+1]e 7oXC
V(o)  1+R,(jw)e ToHC

where:
vee(jw) = velocity of the bridge.

@

Besides being related to the bridge admittance,
this function is sinuscidal, and favours
incomparably frequencies close to f;n/B, which on
the other hand give low admittances. (n=1,2,3...,

f,=1. mode frequency, B=x/L.) If the relatively
modest resonant fluctuations of bow velocity shall
have any impact on the bridge-velocity spectrum,
chances are indeed greatest near to fn/p.

1.4 Spectrum of the frictional force
During the sticking interval, a steady-state bow
velocity forces the string to follow in the same
direction. However, due to string end reflections,
the frictional force will be varying during this
interval. Most important are the periodic
reflections of transverse waves travelling "ping
-pong" between the bow and the bridge. These
waves are (mainly) excited at the release and
capture of the string at the bow (Schumacher [3]),
and rotate with a frequency equal (or close) to
fy/B. For this frequency, the transverse point
impedance shows a peak, making the string harder
to excite. Hence, a significant peak will also occur
in the frictional-force spectrum. The height of this
peak is, however, reduced if the torsional
impedance - the bridge impedance - or the bow-
hair impedance shows a valley in the same region.
Simulations show that the most dominant maxima
of the frictional-force spectrum are usually found
at f,, and near to f/B. When considering that
bow-velocity fluctuations in principle may be
regarded as a convolution between the impulse
response at the bow hair, and the derivative of the
frictional force, the importance of the friction
spectrum with respect to bow resonances, becomes
obvious. '

1.5 Spectral magnitudes of string velocity

at the point of bowing

Compared to our measured spectral amplitudes of
the bow hair, the amplitudes of the string at the
bowing point are generally very high. Per
example: with normal values of B, the amplitude
of £, will be close to 2V, i.c., twice the steady-
state bow velocity. This, of course, reduces the
possibilities of timbral impacts caused by bow-
velocity fluctuations. However, around the node
frequencies, the sinusoidal string-velocity spectrum
have notches. By the same frequencies, the
frictional-force spectrum shows peaks, so chances
are that impact of bow resonances on the string
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may be competitive just in these regions.

1.6 Time windows of static- and sliding
friction

During the sliding interval, the string is more or
less "decoupled” from the bow hair. Hence, the
transmission of bow resonances takes much lower
values. But, during the static interval, waves have
been emitted on the string, equally to the bridge
and the nut side of the bow, therefore, during the
sliding interval, waves will arrive at (and mostly
pass) the bow after having been reflected at the
nut at a time 0.5(1-B)/f, earlier. The frequency
content of these waves will then vary in phase
compared to the phases of the "decoupled" bow
oscillations. Dependent on their relative phase
angles (and thus J), this time window will very
much determine the effect of decoupling on the
string spectrum, when averaged over the full
period: frequencies near nf, =f(m+ 0.5)/B give
the strongest bow/string transference (n and m
being integers: 0 < m <n), while frequencies near
nf,=m/B, (0 <m<n) transfer up to about 2P
times less. This rule of thumb holds only if we
reckon a 180 degree phase shift at the nut
reflection and ignore the differences of string
admittances, as expressed through Eq.(1). The
time windows may, due to the on/off switching
effect, also produce “sidelobe frequencies",
although most probably of insignificant
magnitudes, compared to those already in the
string.

1.7 Other elements that may cause
audible changes of timbre

(1) The violin bow has major resonances below
the frequency range of the instrument - at
frequencies where the violin body is a poor
radiator. There is nonetheless a possibility that
these low frequencies are perceived by the ear
through amplitudal modulation of the "real” violin
frequencies. The ear cannot always easily judge
which is which. At any rate, during the attack
transients, the frictional force fluctuates vividly,
also at lower frequencies than the fundamental f;.
(2) As described by Mclntyre et al. [4], the length
of fundamental periods tends to fluctuate
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somewhat. Simulations show that both string
torsion and bow resonances could cause such
fluctuations, as both may possess mode
frequencies  interfering with those in the
transverse plane. Apart from the "phaser effect" of
such behaviour, a widening of the peaks in the
power spectrum may increase the power of
(resonant) "near-harmonic" frequencies, the same
way a vibrato does.

2. COMPARISON OF
STRING AND BOW ADMITTANCES

2.1. Transverse and torsional point
admittances

Figure2 shows transverse and torsional point
admittances of a "heavy" violin G string excited at
B=0.08. These values were acquired through
computer modeling, by averaging FFTs of a
series of "white-noise" simulations on a string
with transverse and torsional wave impedances of
370 and 925 g/s, respectively. (Pickering [5] gives
values from 274 to 386 g/s for transverse wave
impedances of violin G strings, while the
impedances for higher strings, are generally
lower.) The relative velocity Ciop/Crry Was
programmed to 4.8, and Q-values to
245<Qgy<525 and 17<Q;r<31 within the
10,000 Hz bandwidth. The simulation parameters
above are used throughout this text, including the

figures. .

As can be read from Fig. 2, the transverse
admittance is by far the highest for most mode
frequencies. This implies that little transverse
kinetic energy will transform into torsional at
these harmonics. However, at the 11th and 12th
harmonic (near f,/p), this difference is small. Had
in our example, the relative velocity been equal to
4.0, a substantial amount of the transverse kinetic
energy would transform into torsional at these
frequencies, because the torsional admittance
would have its third-mode peak at 12f,. On the
other hand, the 9th and 10th would benefit from
this change, then being in the range of a torsional
admittance valley. When comparing simulations
applying these two relative velocities, a very
noticeable difference (6 -8 dB or more) in the



Figure 2: Transverse and torsional
point admittances for a high tension
violin G string (curves obtained through
computer simulations: for details on
string properties see text). At most
mode frequencies, the transverse
admittance is significantly higher than
the torsional.

Figure 3: Admittance of a bow,
measured with an accelerometer in the
bow hair. The impedance of the
accelerometer is accounted for, and
drawn as dashed lines. The frequency
region above 5SkHz should be
considered with caution, as it may
contain spuridus information.

Figure 4: Transfer function: bridge
velocity divided by velocity of the
string at the bowing point. The
sinusoidal (phase-related) bow-to-bridge
signal transference is quite visible,
superimposed on the bridge
transmission curve. The frequency
Crrv/2X = 2.25 kHz is circled.

Figure 5: Simulated frictional-force
spectrum of an open G string bowed at
B=1/11.5 (as for Figures 2 and 4).
High amplitudes occur at f; and at
integer multiples of £,/B.
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bridge power spectrum can be observed for some
of these frequencies.

Schumacher [3] has reported that formally,
the bow admittance can be viewed in the same
way as one views the rotational string modes.
Consequently, the bow  possesses the same
potentials of reaction, provided its admittance be
high enough compared to the string-point
admittance.

2.2 Admittance of the bow (hair) in its

longitudinal direction

In the present experiment, a miniature
accelerometer was fastened in the bundle of hair
(with all hairs in contact), and hit with a miniature
force hammer. Measurements were taken both in
the longitudinal and transverse direction of the
bow hair, and at different positions along the bow
(tip - middje - frog). The bow was mounted in the
flexible bow holder of the bowing machine, with
the hair free from contact with the strings. (With
the flexible bow holder, the bow resonances are
more closely matching those obtained when
holding the bow by hand.)

Fig. 3 shows the admittance obtained when
measuring the longitudinal admittance of the bow
hairs at their midpoint. The measurement is
influenced by, the accelerometer, the mass of
which (1.1 g) is of the same magnitude as that of
the bow hair (a complete bundle of bow hairs
weighs between 4 and 5 g). A compensation is
therefore necessary, and has been calculated for.
As the compensation is relatively large, even a
small uncertainty in the compensation admittance
will have a rather large influence on the result,
and in particular the phase information.. We
should therefore be somewhat cautious when
considering the measurements above, say 5 kHz.
With respect to individual bow characteristics, the
major wood resonances fall below this frequency
anyhow.

Different string positions on the bow hair
produce different resonances, particularly above
2 kHz. Some of these have been seen to surpass
the values of Fig.3. In general however, the
admittance of the bow as "seen by the string", is
much lower than are the string admittances for the
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transverse  string-mode frequencies. (Further
discussion on the origins of bow resonances is
beyond the scope of this article.) For higher tuned
strings, possessing (up to some 3 - 4 dB) higher
admittances, the admittance gap is even greater,
and chances of spectral influence are reduced
accordingly. On other bowed instruments of lower
frequencies, the admittances may be "better
matched". Which bow being the superior - the
resonant or the non-resonant - remains to be
evaluated, however.

3. THE TRANSFER FUNCTION

Figur 4 shows the measured transfer function of a
violin G string: velocity of the bridge divided by
string velocity at the bow. The bowing point is
equal to L/11.5 as in Fig. 2. The sinusoidity is
clearly visible. Compared to Eq.(2), the measured
function bears typical features of string stiffness
(expanding intervals between peaks toward the
high-fregency end) and epergy dissipation
(lowered transfer ratio for high frequencies).

The transfer function was measured in a rather
unsophisticated way, just for demonstration of the
sinusoidity: with the bow held by the bowing machine (thus
maintaining a correct bowing point) it was manually
"scratched" over the string, exciting only a thin hiss. The
string, at its nut side, was efficiently dampened by pads of
foam rubber. Since the distance between the string and the
magnet below would vary, no calibration was possible. Fig.
4 shows the average of 10 such registrations.

4. THE FRICTIONAL FORCE

Figure 5 shows the (simulated) frictional force of
the string model bowed with fixed velocity and
(high) bow force. The frequencies f, and f,/p
dominate. Besides what was already discussed
under paragraph 1.4, the frictional-force spectrum
is affected by the bridge impedance to the extent
the string point admittance is affected through the
bridge reflection function.

At frequencies near nfy/p=nCry/(2LB)
(n=pos. integer), where cos (0 2X/Czy)=1, the
expression 1+Rgp(j®) of Eq.1 can be substituted
with expressions of impedance: 1+Rg(jo) =
2Z/[Z+Zgr(j®)], where Zpp(jo) is the impedance
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of the unstrung bridge. The effect of bridge
impedance on the transverse string point
admittance can then more easily be seen: the
string point admittance increases with increasing
bridge admittance. Between these "node"
frequencies, the influence of the bridge impedance
is reduced and varies sinusoidally.

5. CONCLUSIONS

Admittances of the string at the bowing point, and
of the bow at its hair, have been calculated and
measured, respectively. In certain frequency
regions, partly dependent on the bow position, the
transverse point admittance of the string is found
to have magnitudes small enough to be
comparable to the peak admittances of the bow.
Even though significant fluctuations of the steady-
state bow velocity were observed in the bow hair,
no hard evidence was found of these reaching
magnitudes that substantially would influence the

output spectrum, as yet.

This study was mainly directed toward
steady-state behaviour of the bow, investigating
frequencies within the range of natural string
harmonics. Low-frequency oscillations during
transients should be subject to investigation next.
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