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By carefully positioning the bow and a lightly touching finger on the string, the string spectrum can

be conditioned to provide narrow bands of pronounced energy. This leaves the impression of multi-

ple complex tones with the normal (Helmholtz) fundamental as the lowest pitch. The phenomenon

is seen to be caused by two additional signal loops, one on each side of the finger, which through

the repeating slip pattern get phase locked to the full loop of the fundamental. Within the nominal

period, however, the slip pulses will not be uniform like they are during the production of a normal

“harmonic” or “flageolet” but may vary considerably in shape, size, and timing. For each string,

there is a large number of bow/finger combinations that bear the potential of producing such tones.

There are also two classes, depending on whether the bow or the finger is situated closest to the

bridge. Touching the string with the finger closest to the bridge will somewhat emphasize the

(Helmholtz) fundamental. The technique is applicable to double bass and cello, while less practical

on shorter-stringed instruments. Analyses based on impulse responses and the Poisson summation

formula provide an explanation to the underlying system properties.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3651251]
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I. INTRODUCTION

Multiphonics in wind instruments has been around for a

while. Nowadays you often hear saxophone players utilizing

the technique in jazz and contemporary music. In brass

instruments, the effect dates back even longer and even is

found in music from the classical period (e.g., in the horn

concerto from 1806 by Carl Maria von Weber). Here the

musician sings along with the lip-controlled pitch and thus

creates a quite audible series of difference tones. Woodwind

players mostly use quite special fingering in combination

with very precise embouchure.

In string instruments, multiphonics is mainly a filtering

technique where the potential energy of certain partials of an

(in most cases) open-string fundamental is restrained by a

left-hand finger pad lightly touching the string. This favors

the conditions for some of the remaining partials, separately

or in narrow clusters. See Fig. 1 for a typical sound spectrum

of a double bass played with the lightly touching finger four-

and-a-half semitones up the string, and the bow placed at the

seventh-harmonic node. (Here, a denotes the finger position

relative to the string length, k denotes relative string-length

decrement per semitone �0.9439, the power of which thus

denoting the number of semitones, while b denotes the rela-

tive bow position on the string with respect to the bridge). In

Fig. 1 the corresponding decimal values for a and b are

approximately 0.77 and 0.14, respectively.

Although performed by Italian double bassist Fernando

Grillo1 during the first part of the 1970s, with similar effects

already being utilized by Hungarian György Ligeti in his

work “Apparitions” from 1958 to 1959, the first comprehen-

sive description of multiphonics is dated to 1995 when

French bassist Jean-Pierre Robert published his bilingual

book “Les Modes de jeu de la Contrabasse—Un Diction-
naire de Son/Modes of Playing the Double Bass—A Diction-
ary of Sound” in collaboration with IRCAM.2 This research,

which started in 1985, also made a noticeable impact on

composers working in Paris and IRCAM at the same time. A

similar description on the production of multiphonic sounds

was later found in the article “A personal pedagogy” by

Mark Dresser.3 Dresser has been further exploring multi-

phonics, without being much influenced by the European

achievements, and his discoveries were presented in several

articles published in The Strad.4

A comprehensive and detailed study on multiphonics on

the double bass was later presented by Michael Liebman in

his article “Multiphonics: new sounds for double bass,” which

unfortunately has remained unpublished. His study on new

sonic opportunities of string instruments began in 1997 and

manifested itself quickly in the composition Movement of
Repose (1998) for cello and the article “Multiphonics Neue

Moglichkeiten im Cellospiel (Multiphonics, new possibilities

in cello playing).”5 In the material from Robert, Liebman, and

Dresser, we find extensive information about the technical

production and timbre variations of multiphonics sounds, to-

gether with chord schemes (spectral analysis) that illustrate

the most known multiphonics. However, the acoustical impli-

cations in terms of string waveforms, etc. were never touched

upon by these authors.
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II. MEASURING METHOD

To clarify how the string moves, a hybrid technique was

utilized in our experiments: After a traditional recording of

the string movement under the bow, i.e., with a strong magnet

placed directly under the string and a registration of the differ-

ence in voltage potential at the two string ends, the resulting

(velocity) signal could be fed as the bow-velocity input to a

bowed-string simulation program.6 By combining this signal

with a bow force that ensures a static-friction grip at all

times—and some suitable string-end and touching-finger

reflections, the characteristic movements of the entire string

could be visualized and analyzed.10 (Conveniently, the string

cannot “see” the difference between static and dynamic fric-

tion, only the resulting frictional force, which also can be

derived from the simulation itself provided the string impe-

dances and the other parameters are correctly defined.) This

proved to be a very convenient way of getting an overview

over otherwise quite complex phenomena and enabled us to

produce a slow-motion animation of every multiphonics

member, as well as estimating the force acting on the bridge.

With a fixed bow position on the string, a series of

unique sound spectra can be obtained by moving the lightly

touching finger along the string length. We recorded a selec-

tion from two such series on an open double-bass E-string:

one with the bow placed at the point b¼ 1/7 of the string

length from the bridge and another one where b was 1/13.

These are shown in Figs. 2 and 3, respectively. Spectral anal-

yses were done both from the string signal itself and from an

audio signal picked up with a normal microphone in the near

field of the instrument. In the plots, a indicates the position

of the lightly touching finger (measured from bridge), rela-

tive to the vibrating string length, while k indicates the rela-

tive string-length decrement per semitone, that is:

k¼Exp[–ln(2)/12] � 0.9439. Thus the exponent of k gives

the number of semitones above the pitch of the open string,

while the decimal 0.5 denotes a quartertone.

Normally, finger positions with the potential of produc-

ing “normal harmonics” (flageolet tones) are avoided. This

implies staying away from nodes of, say, the six lowest har-

monics. However, with a careful choice of bow speed and

FIG. 1. (Color online) Sound spectrum of a multiphonics played on the

double-bass E-string with the lightly touching finger at a¼ k4.5 � 0.77 (rela-

tive string length), and the bow at b¼ 1/7 � 0.14 (relative string length).

Harmonics 9 and 13 are clearly emphasized in the spectrum while harmon-

ics in between are restrained.

FIG. 2. (Color online) Examples of practical multiphonics (b–g) based on bow position, b¼ 1/7 � 0.14, compared to Helmholtz motion (a). Left column

shows finger- and bow positions on the string as seen by the player. Middle column indicates dominant harmonics (bold harmonic numbers and musical

pitches) as measured with microphone in the near field. Right column shows string wave forms under the bow.
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force (lower and greater, respectively), flageolet tones can be

avoided in any case. In Figs. 2 and 3, the left column indi-

cates finger- and bow positions as seen by the player. The

middle column indicates the resulting dominant harmonics

both by number and pitch, while the right column shows

string waveforms under the bow. Notice that in Fig. 2, exam-

ples f and g (with a¼ k38 and k40, respectively) are of class

one with the finger touching the string between the bow and

the bridge, while the remaining ones are of class two, i.e.,

with the finger on the nut side of the bow. Although mem-

bers of class one multiphonics respond better and are easier

to play, members of class two are more often employed as

these offer a greater variety of sonorities.

As is seen in Figs. 2 and 3, right column, where the

string’s velocity for a little more than three nominal periods are

plotted, each multiphonics has more than one slip (pulse with

significant negative velocity) per period. These vary in both

width and velocity. For the two last examples of Fig. 2, the

waveform shows a long sticking interval followed by a series

of short slips. This is typical for the class one members. During

the stick interval, the string behaves pretty much like under

normal Helmholtz conditions, although several “corners” can

be seen traveling in succession. Figure 4 shows examples of

string shapes (upper panel) and the respective force on the

bridge (lower panel) as calculated with the simulation program

when using the measured bowing-point string velocity as

input.10 Unlike in ponticello playing, where the number of slips

per nominal period usually determines which harmonic number

dominates (with spectral slopes on both sides), the spectral pro-

files of the multiphonic members appear far more complex.

III. IMPULSE-RESPONSE ANALYSIS

A. Signal bookkeeping

1. Class one

To understand the filtering mechanism, it is useful to

look at the impulse response with the lightly-touching finger

on the string. By use of a simulation program, the important

parameters, particularly bow and finger positions, can be

defined and utilized for impulse-response experiments. In

this connection, the finger can be regarded as purely resistive

with convenient reflection and transfer coefficients both

equal to 0.5, while disregarding further losses. With absolute

(amplitude) reflection coefficient c¼ 0.5, half the energy is

dissipated in the finger: the relative reflected energy,

RE¼ c2; the relative transmitted energy, TE¼ (1 – c)2; the

relative dissipated energy, DE¼ 1 –RE – TE. Our simulations

suggest that the value of c is not of significant importance

for the spectral profile within the range 0.2< c< 0.8. Neither

is the profile very sensitive to the losses at nut and bridge

provided these are reasonably small.

Figure 5 (example of class one—bow on the nut side of

the finger) shows the force on the bridge during the first 1.3

nominal periods after a unit impulse is given at the bowing

point, b, at the time t¼ 0. The letters E, B, F, and N stand for

excitation point (i.e., bowing point), bridge, finger, and nut,

respectively, and indicate the paths of the impulses arriving at

the bridge. As is seen, there are two trains of fading impulses,

one negative and one positive, both with intervals of Ta
(where T is the nominal period of the unfingered string), but

FIG. 3. (Color online) Examples of practical multiphonics (i–n) based on bow position, b¼ 1/13 � 0.077, compared to Helmholtz motion (h).
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the negative series shifted T(1 –b) with respect to the positive

one, as it has taken one turn to the nut before entering the

bridge area. Because the impulses fade out with a factor c for
each repeated reflection at the finger, we can roughly describe

it as a series of Dirac deltas on the bridge side (ignoring the

very first Tb/2 delay and minor losses at the bridge and nut):

X1

k¼1

ck d t� T ka½ � � d t� T kaþ 1� bð Þ½ �f g; (1a)

where d is the Dirac delta and c is the absolute reflection

coefficient.

The delay term T(1 –b) describes the initial impulse

traveling directly to the nut before returning to the bridge

area. Moreover, a fading signal will be looping between the

nut and the finger:

X1

k¼1

ck d t�T k 1�að Þ½ � � d t� T k 1�að Þ þ 1�bf g½ �f g:

(1b)

But, of course, these will only have consequences after

entering the bridge side. The reason we make this approxi-

mation is that it tells us something about the profile of the

resulting impulse-response spectrum. Taking the Fourier

transforms of Eqs. (1a) and (1b), we get:

X1

k¼1

ck Exp jT kax½ � � Exp jTðkaþ 1� bÞx½ �f g; (2a)

where j ¼
ffiffiffiffiffiffiffi
�1

p
and x is the angular frequency: 2pf, and

X1

k¼1

ck Exp jTkð1�aÞx½ ��Exp jTðkð1�aÞþ1�bÞx½ �f g;

(2b)

respectively. We see that due to pair-wise symmetry, Eqs.

(2a) and (2b) will both go to zero whenever x¼ n2p/
T(1 – b), (n¼ 1, 2, 3,…), i.e., for harmonic frequencies of

the delay period T(1 – b). Notice, however, that the expres-

sions in the preceding text are not the only ones relevant for

describing existing loops. For instance, there is the loop of

the full string length, which has a decrement factor of

(1 – c)2 per period, T. The contribution of this loop is mainly

seen in slight shifts toward harmonicity for resonances al-

ready discussed. Unarguably, Eqs. (1a) and (1b) constitute

the most significant factors in terms of understanding how

the spectrum is shaped.

2. Class two

In a similar way, we can construct some approximate

expressions for class-two multiphonics (bow on the bridge

side), although to obtain pair-wise symmetry, we temporarily

have to ignore the very first impulse of Fig. 6, arriving at the

bridge at t¼Tb/2 and counting from there.

For the signal looping between the bridge and the finger

we can write:

FIG. 4. Characteristic string shapes (upper panel) and force signals on the

bridge (lower panel). Reconstructions are based on actual string-velocity signals

recorded under the bow. The letters a;b; and g refer to the examples shown in

Fig. 2. Members of class one (e.g., example g) resemble to some degree the

Helmholtz motion but differ from this mode in that they comprise several rotat-

ing corners (some of which are marked with spikes in the upper panel). These

corners cause a series of non-uniformed slips within each nominal period.

FIG. 5. The first part of a simulated impulse response (force on the bridge)

for multiphonics of class one. The letters E, B, F, and N stand for excitation

point (i.e., bowing point), bridge, finger, and nut, respectively, and are indi-

cating the paths of the impulses arriving at the bridge. The impulse marked

with an asterisk is a result of concurrent impulses arriving from two differ-

ent paths.
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X1

k¼1

ck d t� T k a� bð Þ½ � � d t� Tk a½ �f g; (3a)

and for the signal on the nut side of the finger:

X1

k¼1

ck d t� T k 1� að Þ � bf g½ � � d t� T k 1� að Þ½ �f g: (3b)

The elements of the corresponding Fourier transforms read:

X1

k¼1

ck Exp jT k a� bð Þx½ � � Exp jT k ax½ �f g; (4a)

and

X1

k¼1

ck Exp jTk 1�að Þx½ � � Exp jT k 1�að Þ � bf gx½ �f g:

(4b)

These last two expressions both equal zero for frequencies,

x¼ n2p/(Tb), (n¼ 1, 2, 3,…), but after adding the trans-

form of the missing first impulse (i.e., unity for all x) the
effect is reduced and the cancellation only partial (a mini-

mum magnitude value will appear).

Notice, the filtering effects described in the preceding

text for multiphonics of classes one and two are not simply

modifying an established waveform such as the Helmholtz

mode11 or any higher type of Raman vibrational modes.12

(Evidence of this can be found through deconvolving13 the

multiphonic string signal under the bow with the impulse-

response signal at the same place, followed by a convolution

with the impulse signal of the free, unobstructed, string, or,

alternatively, through convolving a Helmholtz signal with a

class-one impulse-response signal followed by a deconvolu-

tion with the free-string impulse response.) The filtering

rather defines the waves’ environment on the string, i.e., the

conditions for different frequencies to develop and survive

there, while the resulting mode appears as a matter of the

consequent nonlinear stick-slip action. However, closest to

the Helmholtz mode is multiphonics of class one, where a

number of successive corners are rotating on the string with

the same orientation as the single corner during Helmholtz

motion. No such rotation is apparent in class two. One

should also remember that in class two, where no filtering

object is positioned between the bow and the bridge, the

resulting force spectrum at the bridge is uniquely defined by

the string’s (slip-stick) wave pattern under the bow, with no

further concern to the finger’s filtering on the nut side (this

inverse-multi-lobe transfer function is described by Schoon-

derwaldt14 and others).

3. Simulated spectra

Figures 7 and 8 show simulated impulse responses of

classes one and two, respectively: The rectangular signal

window was exactly 20 nominal periods long and so was the

DTFT. No further windowing was utilized. Simulation pa-

rameters were: c¼ 0.5; absolute reflection functions at

bridge and nut: each 0.99 (resistive); no torsion or other

losses; b¼ 1/7¼ 0.14. The thick gray line indicates the con-

tinuous spectrum of the response. Magnitude minima and

maxima of the continuous spectrum will only have conse-

quences for the discrete harmonic spectrum as long as they

coincide. Notice that in Fig. 7, we have notches in the con-

tinuous spectrum exactly where predicted from Eqs. (2a) and

(2b), that is, relative frequencies n/(1 – b)¼ n/0.86, which
coincide with the harmonic numbers 7, 14, 21, etc., for

n¼ 6, 12, 18. Notice also that the most prominent harmonics

of Fig. 7 are the 9th, 10th, and 11th, just as measured from

example g of Fig. 2. The major peak seen at harmonic 10 is

controlled by the loop Ta of Eq. (2a), which gives: n/a
¼ n/0.1¼ 10, 20, 30,… for n¼ 1, 2, 3, etc.

In Fig. 8 (example of class two), the picture might appear

less clear at first, although very sharp peaks in the continuous

spectrum can be seen at harmonic frequencies 4, 8, 12, etc.

These are related to the delay periods Ta and T(1 – a) of Eqs.
(3a) and (3b), respectively. In Eqs. (4a) and (4b), magnitude

maxima are found for frequencies m/(Ta), (m¼ 1, 2, 3,…)

FIG. 6. The first part a of simulated impulse response (force on the bridge)

for multiphonics of class two.

FIG. 7. (Color online) Spectra resulting from a class-one simulation

(a¼ k40¼ 0.1, b¼ 1/7¼ 0.14). Gray thick line, continuous spectrum result-

ing from a normal impulse response; thin black lines, discrete spectrum

resulting from impulses periodically repeated with intervals T, as predicted

by the Poisson summation formula.
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and for n/[T(1 – a)], (n¼ 1, 2, 3,…), respectively. Where

these two coincide, or nearly do so, the continuous spectrum

will show major maxima, which again will have impact on

the discrete spectrum if coinciding with the harmonic

frequencies.

In the present case, a¼ k5¼ 0.75, so we get maxima for

relative frequencies m/0.75¼ 1.33, 2.67, 4.0, etc., and for

n/0.25¼ 4, 8, 12, etc., with major maxima at these harmonic

numbers as seen in Fig. 8. Even though a indicates the posi-

tion of a normal fourth harmonic (flageolet), the spectrum

shown is indeed not of such a tone: The present spectrum is

what you get if you draw the bow with fairly low speed and

high force, adequate for multiphonics.

In our very first example of multiphonics (i.e., Fig. 1

and example b of Fig. 2), the parameter a was k4.5¼ 0.77.

Accordingly, the expression m/a¼ 9.09 and 12.99 for m¼ 7

and 10, while the expression n/(1 – a)¼ 8.70 and 13.04 for

n¼ 2 and 3, respectively. These pairs of peaks fall close

enough for the harmonics 9 and 13 to stand out exactly as

was demonstrated at the outset. The simulated impulse

response of this finger-bow combination and its belonging

discrete harmonic spectrum are shown in Fig. 9. Notice that

a quarter-tone adjustment (from semitone 5 to 4.5) of the

lightly touching finger is all that was required for this spec-

tral change to materialize.

B. The Poisson summation formula

In Figs. 7–9, we have actually anticipated the Poisson

summation formula (PSF) by drawing in discrete lines for

every harmonically related frequency up to the amplitude

value of the continuous spectrum. While the continuous spec-

trum shows us the response of a single impulse at the time

t¼ 0, we actually want to find the spectrum when periodic

impulses are given at times t¼ k�T, (k¼ 0, 1, 2,…, 1). How-

ever, as the PSF will show, the resulting discrete spectrum

can conveniently be estimated directly from the single-shot

impulse response when reading the Fourier-transform values

for frequencies f¼ n/T, (n¼ 1, 2, 3,…) only, while ignoring

the rest of the continuous spectrum. The PSF reads:

X1

k¼1
f xþ 2pkð Þ ¼ 1

2p

X1

n¼�1
F̂ nð Þeinx: (5)

From this formula it can be deduced that given an impulse

response with the continuous Fourier transform

~F xð Þ :¼
ð1

�1
f tð Þe�ixtdt; (6)

the response of a series of identical impulses repeating with

intervals of T will, provided convergence, add up to a Fou-

rier transform with the discrete components

~F nð Þ ¼ ~F x�nð Þ; n ¼ �1; ::;�1; 0; 1; ::;1ð Þ; (7)

where x0 ¼ 2p=T:

C. Relevance to airborne sound

The analyses in the preceding text are all based on the

string’s impulse signal and the resulting force on the bridge. In

addition to the filtering in the string caused by the bow and the

finger, the resonances and radiation of the instrument body are

of course major factors in determining the final spectral out-

come. With multiphonics produced on the lowest string, the

lowest few harmonics will be poorly radiated by the instrument

body, giving more emphasis on signal peaks above, provided

they don’t fall between body resonances. Likewise, due to the

higher bending stiffness of lower strings, the range of harmon-

ics that could potentially dominate will be limited also in the

high end. The useful range of invocable harmonics seems to

roll off around the twentieth. For that reason, strings without

too great high-frequency damping are preferred. Another,

more perceptional factor is that harmonics with numbers

FIG. 8. (Color online) Spectra resulting from a class-two simulation

(a¼ k5¼ 0.75, b¼ 1/7¼ 0.14). Thick gray line, continuous spectrum result-

ing from a normal impulse response; thin black lines, discrete spectrum

resulting from impulses periodically repeated with intervals T, as predicted

by the PSF.

FIG. 9. (Color online) Spectra resulting from a class-two simulation

(a¼ k4.5¼ 0.77, b¼ 1/7 ¼ 0.14). Thick gray line, continuous spectrum

resulting from a normal impulse response; thin black lines, discrete spec-

trum as predicted by the PSF.
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2n (n¼ 1, 2, 3,…) and 3�2m (m¼ 0, 1, 2,…) hardly will be

noticed even when emphasized in the spectrum due to their

quality of consonance (octaves and fifths) with respect to the

fundamental pitch. Figure 4 displayed just that kind of situa-

tion. When regarding the middle columns of Figs. 2 and 3, it is

striking that odd-numbered, dissonant harmonics dominate in

this selection of musically desirable multiphonic members.

Like in ordinary bowing, the spectral profile can be fine-tuned

by the bow force but not on a detailed level.

IV. SUMMING UP

Through impulse-response analyses we have shown two

classes of multiphonics. In both classes, we have seen

impulse trains arrive at the bridge in pairs with opposite

signs and with a delay between, but of (nearly) equal ampli-

tudes so that they will cancel each other in certain parts of

the spectrum. The delay is controlled by the position of

the bow.

For class one, where a<b (given b< 0.5), the delay is

T(1 – b), which in turn will restrain frequencies n/[T(1 – b)]
(n¼ 1, 2, 3,…) of the continuous spectrum, while in the same

spectrum, peaks are distributed at frequencies higher than the

harmonics of the nominal fundamental 1/T. The position of

the lightly touching finger determines the frequencies of dom-

inance in the discrete spectrum. These will be found in the vi-

cinity of n/(Ta) (n¼ 1, 2, 3,…) and appear clustered.

For class two, where a> b, the delay is Tb, which

restrains frequencies n/(Tb) (n¼ 1, 2, 3,…) of the continu-

ous spectrum. However, due to an alone-standing impulse at

the onset (t¼Tb/2), these frequencies will not be as much

restricted as was the case for the restrained frequencies of

class one. In the continuous spectrum, magnitude maxima

will be found for frequencies m/(Ta), (m¼ 1, 2, 3,…) and for

n/[T(1 – a)], (n¼ 1, 2, 3,…), respectively. Where these two

coincide, or nearly do so, the continuous spectrum will show

major maxima, which again will have impact on the discrete

spectrum if falling on harmonic frequencies. So, it is not

quite as straightforward to predict the resulting outcome of

bow and finger positions in class two. Some calculation is

required.

It should be added that multiphonics is not restricted to

open strings. On the double bass, “artificial” multiphonics

can be produced chromatically from the lowest positions

with the lightly touching finger up to three semitones higher

than a firmly pressing thumb (i.e., a� k3¼ 0.84). It goes

without saying that in higher positions, this interval can be

increased, so that lower values of a are obtainable.
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