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ABSTRACT 

Raman and Schelleng analyzed waveform properties of 
the bowed string as function of bow speed, bow force, and 
bow position (the distance between bow and bridge). 
Schelleng also described spectral changes caused by 
alterations of the bow force alone. This phenomenon was 
further explained by Cremer, and referred to as "rounding 
of the Helmholtz corner". In this study it is shown that of 
the remaining two parameters, it is the bow's speed rather 
than its position that bears a potential of changing the 
shape of the string's spectral envelope. This contrasts to 
the popular belief that by bringing the bow closer to the 
bridge, the sound automatically becomes more brilliant. 

 
Figure 1: 

Diagram from Schelleng’s JASA paper. Given a fixed bow speed, 
the triangle sets the borders for maintaining Helmholtz motion in a 
bowed string. Two timbre expressions, “Brilliant” and “Sul tasto”, 
are included in the figure, within the triangle. 

1. INTRODUCTION 
Every string player has experienced that by bringing the bow 
closer to the bridge, the sound becomes more brilliant. In the 
case of pizzicato, a similar effect is observed when the point of 
plucking is approaching one of the string’s termination points. 
One might thus easily jump to the (hasty) conclusion that 
changing the point of excitation alone alters the spectral 
envelope in both cases. 

 
2. ANALYSIS OF FORCE ON THE BRIDGE 

DURING PIZZICATO AND ARCO 
In pizzicato, the force exerted on the bridge during each 
individual period is in principle an off-set square pulse with a 
width equal to β/f0  (β being the relative position of excitation, 
and f0 the fundamental frequency). For large β, the spectral slope 
is  generally −6 dB/oct., corresponding to an envelope of 
decaying lobes.  The first lobe, however—the width of which is 
determined by β—will provide a number of partials with 
amplitudes near unity (see Figure 2).  

 In his JASA paper of 1973, Schelleng[1] utilized a diagram 
to describe the requirements for maintaining the Helmholtz 
motion in terms of the bow’s force and position, provided a 
given speed and defined string properties. He also brought the 
concept of timbre variation into the picture, introducing the two 
terms “brilliant” and “sul tasto” in his diagram. (“Sul tasto” 
literarily means “by the fingerboard”, but appears here, 
presumingly, as reference to soft tone color.) It is, however, not 
immediately apparent from the figure whether these timbre 
differences are caused by change of bowing position (the two 
expressions are marked at different bow positions within the 
Helmholtz area), or by change of bowing force (the expressions are 
positioned at different values with respect to the ordinate).  

So is not the case in arco: The force signal exerted on the 
bridge during an ideal Helmholtz motion remains a perfect 
sawtooth wave, irrespectively of which β chosen. As long as the 
Helmholtz corner is “sharp”, the deviation from the ideal saw-
tooth shape are steps due to “missing partials” or “…node 
frequencies” i.e., frequencies having a node at the position 
where the bow excites the string (see Appendix). The sawtooth 
wave itself creates no spectral lobes, but decays smoothly at a 
rate −6 dB/oct. (Lobes are seen, however, in the spectrum of 
string velocity under the bow.) 

 In the discussion that followed, Schelleng showed how the 
waveform of the string velocity under the bow changes with the 
bow force. Cremer [2] analyzed this more in depth, and established 
the theory of “the rounded corner”.  
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Figure 2: 

Spectrum of the force acting on the bridge in pizzicato. As β 
becomes smaller, an increasing number of (lower) partials will 
approach unity in magnitude—relative to the width of the first 
spectral lobe. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: 
Example of string velocity under the bow for two different β, but 
with the same bow speed and identical transition functions from 
stick to slip and vice versa. (T0  = the fundamental period; ∆v = 
vBOW /β, while β = the ratio between the bow-to-bridge distance and 
the total string length.) 
 
       
           

As was already shown by Schelleng, it is the transitions at 
release and capture at the bow that carry the potential of 
softening or sharpening the rotating corner, and thus distinctly 
changing the tone color. Figure 3 shows idealized examples of 
such transitions.  

String stiffness and the frictional characteristics of the rosin—as 
well as previous rounding of the rotating corner—cause the string 
release to spread out over a small transition interval before the full 
negative velocity is reached at slip. Accordingly, a comparable 
transition takes place at capture. (In practice the transition at capture 
is often shorter than the one at release—see Figure 4.) It can be 
shown that as long as these transition functions are independent of 
the bowing position, the force signal’s spectral slope, i.e., the shape 
of the envelope, will remain entirely unaffected by β. 

3. EFFECT OF BOW SPEED ON SPECTRUM. 
Figure 4 and 5 show measured string velocity during slip, and 
spectral content for an open violin D-string [3] bowed by a bowing 
machine with bow force = 400 mN, and three different bow speeds, 
respectively. When averaged over a large number of periods, a 
modest prolongation of the slipping interval was observed as bow 
speed was increased. But more importantly: the string’s deceleration 
and acceleration  took slightly lower values. 

The effect of that is quite visible when regarding the 
amplitude spectrum of the string velocity under the bow. When 
normalizing the energy of the first harmonic to zero dB, 
increasing the bow speed from 3 to 5 through 10 cm/s gave 
average amplitude reductions of 1.3 and 5.2 dB, respectively, in 
the range 16th to 65th harmonic. Increasing the bow speed 
further, from 10 to 30 cm/s, reduced the amplitudes only slightly 
more: in average another reduction of 0.8 dB to 6.0 dB, for that 
same harmonic range. It is probably correct to say the influence 
of bow speed on spectrum has its greatest impact at low speeds 
within the Helmholtz regime. 

 

Figure 4: 
Averaged string-velocity under the bow during slip for three 
different bow speeds. Stick/slip transitions are slowed down as 
the bow speed is increased. (Bow force = 400 mN; β =1/10.833; 
bow-hair width = 8 mm; all strokes performed with bowing 
machine). 
 
 

 

 SMAC-2 



Proceedings of the Stockholm Music Acoustics Conference, August 6-9, 2003 (SMAC 03), Stockholm, Sweden 

  

 
 Figure 6: Figure 5: 

Simulated spectral changes as the bow is moved from β = 1/7 to 
β = 1/12 while keeping other bowing parameters unaltered—the 
first harmonics normalized to 0 dB. (From ref. [6].) 

Spectrum of string velocity for the three strokes referred to in 
Figure 4 (normalized to 0 dB for the first harmonic). It can be 
seen that the lowest bow speed gives the highest (relative) 
amplitudes for the upper partials. In each case the spectrum was 
averaged over several strokes with constant bowing parameters.   
 

APPENDIX These spectrum data were obtained by averaging the FFTs of a 
Bluestein [4] -filtered (the filter allowing for an arbitrary number 
of elements in the FFT), moving Hann window of width equal to 
five nominal periods of the waveform under investigation. This 
procedure minimizes the danger of spectral peaks of higher 
harmonics being reduced or “averaged” due to the small 
frequency fluctuations that are always present in a bowed-string 
signal—but less so when the bow speed is high, or the bow force 
low.  

In a purely resistive system like the one studied by Raman 
[8] and Schelleng, the “sawtooth” force signal working on 
the bridge will consist of  a number of steps rather than 
one ramp. This number can be found as the lowest value 
of n that holds for the expression below: 

n(1 − β)  =  integer,      (β < 0.5;  n = 1, 2, 3,…).   (1) 
 The string-velocity signal was recorded as the voltage 

induced in the (steel) D-string when moving in a fixed magnetic 
field provided by a permanent magnet right under the string at 
the point of bowing. The magnet’s diameter (6 mm) was later 
compensated for in the calculations of spectra. Sampling 
frequency was 44.1 kHz (resampled to 148 kHz for Fig 4). 

During the buildup of the Helmholtz motion, slip waves 
“rotate” on each side of the bow with frequencies β/f0 and  
(1−β)/f0, respectively (see ref [7]). In this process, the 
string’s reflection pattern will repeat in time intervals 
equal to n(1 − β)/f0. Examples: for β = 1/6, β = 1/6.1, and  
β = 1/6.5, the force signal will consist of 6, 51 and 13 
(individually sized) force steps per period, respectively. It 
follows that for an irrational β, the force on the bridge will 
take the form of a true sawtooth—after an infinitely long 
transient. 

Apart from the “natural aperiodicity” [5]  of the bowed 
string, no pitch flattening was observed with the bowing 
parameters employed in these tests. Earlier experiments and 
simulations have shown, however, that when pitch flattening is 
introduced as result of excess bow force or too low speed, higher 
partials tend to fade out, while mid-range partials are still 
emphasized.  
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To see the effect of moving the bowing point over a large range 
while maintaining all other parameters unchanged, a series of 
simulations was performed. The string model included torsion 
and a “quasi plastic” friction algorithm (all data similar to String 
I of ref. [7]). The resulting spectra of force on the bridge are 
shown in Figure 6. Apart from the local deviations seen for 
“node frequencies” or frequencies close to these, the general 
spectral envelope remains unchanged for all simulations. There 
is no trend in the direction of greater brilliance for lower β. 
Other string models give similar results. 
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