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Abstract 
In this study, the search for the origin of noise produced in the bowed string serves as the main example of 
advantageous use of the Bluestein filter1 in a certain type of analyses. The task is here to separate the stochastic part 
of the signal from the deterministic one, without shifting the time-domain position of the noise signal, the amplitude 
of which is rapidly (but periodically) varying over each steady-state oscillation period. Or, as a compromise, at least 
keeping the noise amplitudes unaltered with respect to the phase of this periodic signal. This can be accomplished by 
using a correctly dimensioned rectangular time-domain window in combination with a perfectly periodic comb filter 
in the frequency domain. The routine is facilitated by using the Bluestein filter, which permits arbitrarily sized DFT 
to be computed as FFT, giving a substantial time advantage over conventional DFT. Other examples of practical 
filter usage related to bowed string analyses are also discussed.  
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Introduction 
After J. W. Cooley and J. W. Tukey published their algorithm for speedy computation of the Fourier 
transform (“An algorithm for the machine calculation of complex Fourier series”2—now commonly 
referred to as FFT), the majority of practical discrete Fourier analyses have been based on arrays of N data 
elements, where N is 2 raised to the power of any reasonable integer. For many applications, however, the 
original discrete Fourier transform,  DFT (where N is chosen arbitrarily), provides cleaner images in the 
frequency domain, particularly when the time-domain signal is periodic or nearly so, as is the case for 
many music instruments with phase-locked oscillations. The image could become even more blurred if 
the signal needs another transformation back to the time domain after having been filtered in the 
frequency domain. However, already in 1968 L. I. Bluestein published “A linear filter approach to the 
computation of the fast Fourier transform”1, which provided fast transformation of arrays containing any 
number of elements, and with accuracy limited only by the machine’s round off error—still using the 
Cooley/Tukey’s FFT as the central vehicle for transformation.  
 
The later technique has proven advantageous in many applications, one of them being separation of 
stochastic and deterministic components of musical signals. Several methods have already been suggested 
for this kind of separation3,4. One problem with these, however, is that they do not seem to give proper 
information about the generation of noise in the time domain for cases where the noise amplitude 
envelope is periodically changing. For most kinds of spectral-modeling (re)synthesis this represents no 
problem, as the ear is rather insensitive to phase relations above a relatively low fundamental frequency. 
For analyses of the noise’s origin, however, the time-domain information is crucial. This information can 
be well kept if using DFT window length of the proper size, exactly matching an integer multiple of the 
fundamental-period length.   
 
Other examples of usage of the Bluestein filter within bowed-string analysis are speedy resampling 
between arbitrary sampling rates, and highly improved sound-to-noise ratios when utilizing window 
lengths that match arbitrarily chosen numbers of fundamental periods in (nearly) harmonic signals. Both 
types of techniques will be discussed in this paper. Compared to conventional FFT the Bluestein filter 
reduces computation speed by a factor approx. 0.15 for most applications. 
 



The Bluestein filter used for spectral analysis— 
a comparison between true DFT and the zero-padded FFT 
In order to visualize the difference between true DFT (by application of the Bluestein filter) and zero-
padded FFT the following experiment was performed: A bowed string driven in steady state was 
simulated. The fundamental period was steadily occupying 306 time steps. Two spectral analyses were 
done using the same time-domain signal multiplied by a 12×306 (=3672) elements’ Hann window. Panel 
a of Figure 1 shows DFT over 3672 elements with Bluestein filtering, while panel b shows FFT over the 
same window zero-padded up to 4096 elements. Then the experiment is repeated after adding a sinuous 
vibration to the bow speed. The vibrational frequency is 1.5 times the string’s fundamental (see arrow in 
panel c), while the amplitude lies 46 dB below the constant bow speed. The effect of adding this vibration 
is clearly visible in panel c: A subharmonic—half of the string’s fundamental frequency—is founded with 
a complete overtone series. In panel d this effect is entirely hidden by the “interpolation” and side lobes 
created by the zero padding. A comparable situation would occur if stretching the Hann window over all 
4096 elements of the FFT in order to avoid zero padding.  
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Resampling through use of the Bluestein filter 
For all the examples discussed here, it is important to keep clearly in 
Fourier transform either transforms from a continuous signal to a discrete
has analytical implications which one of the two domains (time or freque
In many practical cases one wants to see the spectrum of an originally
sampled it (and thus apparently discretized it) in the time domain. Provide
that there is no frequency wrapping, after Fourier transformation, the d
Figure 1: Comparison between
Bluestein-filtered and zero-
padded FFT. Panels a and b
show spectra of the same
signal, using these two methods
respectively. The signal is the
string velocity under the bow
when oscillating in steady state.
In panels c and d,
superimposed on the bow speed
of 20 cm/s, a sinuous vibration
with amplitude 0.1 cm/s, and
frequency 1.5 times the string’s
fundamental was added. In
panel c a “subharmonic” effect
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frictional non-linearity), while
panel d  hardly deviates from
panel b. 
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domain hold all information required for reconstructing the original continuous signal in the time domain, 
which also per definition is circular with period length equal to the time window. In such cases expanding 
the series of discrete frequencies (in both positive and negative direction) in the frequency domain, while 
setting each of these magnitudes to zero, provides a quick but correct form of resampling, without any 
distortion or loss of information when returned to the time domain. With normal FFT the number of 
elements is even, which means that the discrete frequency-domain representation comprises one more 
positive than negative frequency (the phase of which is zero when the time-domain signal is real). In the 
case of DFT and Bluestein-filtered FFT, the number of elements might also be odd, in which case the 
number of positive frequencies equals that of the negative ones (appearing as conjugate symmetric pairs). 
 
If, however, the signal is truly discrete in the time domain (e.g., as the output of a digital z-filter), the 
application of DFT gives in principle the same transformation as the z-transform, the frequency domain of 
which is continuous. Here zero-padding in the frequency domain would produce a completely different 
effect, as the zeroes would replace magnitude values already implicitly defined by the transformation. 
 
When wanting to use DFT or the Bluestein filter to reduce the sampling rate (e.g., resampling from 4200 
to 4096 time steps per window), some loss of energy in the high-frequency end has to be accepted when 
pairs of positive and negative frequencies are omitted before the inverse transformation is performed. 
 
Examples where resampling is advantageous are numerous (although use of the Bluestein filter would 
significantly reduce the number). E.g., “Reconstruction of bowing point friction force in a bowed string” 
as suggested by J. Woodhouse et al.5 requires resampling of a steady state signal in their application. A 
simpler case occurs when wanting to compare how the string velocity during an averaged slip cycle 
changes with bow speed (as shown by Ref.6). Here the string’s velocity under the bow had been recorded 
with the sampling rate of 44.1 kHz. Since this proved to be too small for alignment and visual comparison 
of transition slopes during release and capture, the sampling rate was subsequently increased to 148 kHz 
through use of the Bluestein filter combined with zero padding in the frequency domain. The result is 
shown in Figure 2. 

 
 

Figure 2: When reducing the bow speed while
maintaining the bow force, the string’s velocity
slopes at release and capture become steeper, which
implies increased relative energy in the spectrum’s
high end. In order to facilitate comparison, the signal
was resampled from 44.1 to 148.0 kHz (by use of the
Bluestein-filter method) so that the three patterns
could be properly aligned. vB = bowing velocity; β =
relative bowing position; T0 = nominal fundamental
period. 

 

Separation of stochastic and deterministic parts of a quasi-stationary signal 
The present experiment was designed to determine how much noise was produced during the different  
phases (stick/slip) of a bowed-string fundamental period. It was important that the position of the noise 
signal with respect to slip/stick was not in any way altered during the process of separation. The following 
procedure was used: 

(1) Precise determination of an (open/rectangular) time window comprising an integer number of 
fundamental periods. 

(2) Transformation to the frequency domain without zero padding or other forms of windowing. 
(3) Determination of, and multiplication with a comb filter, circularly continuous over the entire 

frequency array, and symmetrical around the zeroth element (the DC component) and the Nyquist 
frequency. 

(4) Transformation back to the time domain, where preferably only the middle part of the signal will 
be used. 



(1) In order to determine the length of this time window optimally, an algorithm where the fundamental 
period is extracted on base of a weighed best-fit of spectral peaks, is preferable, (e.g., R. C. Maher and J. 
W. Beauchamp: “Fundamental frequency estimation of musical signals using a two-way mismatch 
procedure”7—in which case zero padding in the time domain will improve accuracy). The window length 
could of course alternatively be determined manually by evaluating how well the periodic comb filter 
covers the harmonically placed peaks of the spectrum. [Notice: Since the comb filter used under point (3) 
of this procedure will (wrongly) determine the frequencies in the near vicinity of the zeroth element (i.e., 
the DC component) as deterministic, and harmonically related to the signal’s fundamental frequency (see 
Figure 3), it might be advantageous to have utilized an appropriate high-pass filter upon recording the 
signal, thus removing all energy in this region.] 
 
(2) The chosen window length should contain an integer number of fundamental periods, each comprising 
an integer number of sample elements. If not, resample as described above, so that these two criteria are 
met. If the window length does not fit to the requirements of FFT (or another prime-factor transformation 
routine available), use the Bluestein filter (described in the Appendix) for DFT without padding. 
 
(3) By fitting an exact integer number of signal periods into the (open/rectangular) time window one has 
ensured that the fitting comb filter becomes periodic in the (quasi circular) frequency domain (see Figure 
3), as well as preventing interpolation or scattering between frequencies to take place before filtering 
(compare the columns of Figure 1). The teeth of the comb filter should preferably be as narrow as possible 
for the following reason: When returning to time domain after multiplication, depending on the comb’s 
“tooth width”, a certain percentage of the stochastic signal will, however, be misplaced like echoes in 
intervals of n2π with respect to the phase of the fundamental period (n being an integer). For analyses of 
the generation of noise in bowed strings during steady state, this represents no problem as long as the 
variation in the noise energy is periodic with period T0. In cases where it is important to minimize the 
scattering effect, one might round off the corners of the comb. This will make the echoes fade out more 
quickly—at the expense of reduced separation. The function shown in the right panel of Figure 3 is the 
DFT of the comb filter. 
 
(4) Do inverse DFT to obtain the time domain signal of the noise alone (remove imaginary residues and 
adjust for DC offset).  To obtain the deterministic part of the signal, just flip the comb filter.  
 

 
Figure 3: Comb filter and artifacts in the time domain for the stochastic signal. Notice
that the Nyquist frequency (NQ) is a multiple of the 1st harmonic frequency. All energy
between the comb’s narrow teeth is defined as noise. When returning to the time domain,
the stochastic signal will to some extend be “echoed” in intervals of nT0 (see right panel).  
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RMS curve. 
 

Appendix—The Bluestein filter routine 
Figure 4: Noise isolated from a violin tone
and the string signal in steady-state
Helmholtz motion. The plots show that
noise—although apparently continuous in
the sound pressure—is mainly generated in
pulses during the slipping intervals. Some
noise, however, is caused by partial slipping
across the bow-hair ribbon during stick8.
Amplitudes up to about 10% of the signal
amplitudes are typically seen. 
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