Pitch. Here, I will stick to the definition used by The American National Standards Institute, Inc. (ANSI):

12.01 pitch. That attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high. Pitch depends primarily upon the frequency content of the sound stimulus, but it also depends upon the sound pressure and the waveform of the stimulus. Unit, mel.

NOTE-The pitch of a sound may be described by the frequency or frequency level of that simple tone having a specified sound pressure level that is judged by listeners to produce the same pitch.

Pitches of different octaves have different notations in different countries, but luckily, ANSI has a simple terminology that has been accepted among scientists all over the world, and is getting more and more utilized among musicians. Each octave (C through B) has a subscript index (e.g., the 440 Hz A is called A_4):

Table 13.2 — Frequencies in hertz (Hz) and frequency levels in semitones counted (sc) up from C_0 for the usual equally tempered scale. Subscripts by octaves above C_0 . C_0 approximately equals 16.352 Hz so that $A_4=440$ Hz exactly

Frequency			Frequency			Frequency		
Note	Level, sc	Frequency, Hz	Note	Level, sc	Frequency, Hz	Note	Level, sc	Frequency Hz
B ₂	35 34	123.47 116.54	B ₅	71 70	987.77 932.33	В ₈	107 106	7902.1 7458.6
A ₂	33 32	110.00 103.83	A ₅	69 68	880.00 830.61	A ₈	105 104	7040.0 6644.9
G ₂	31 30	97.999 92.499	G ₅	67 66	783.99 739.99	G ₈	103 102	6271.9 5919.9
F ₂	29	87.307	F ₅	65	698.46	F ₈	101	5587.7
E ₂	28 27	82.407 77.782	E ₅	64 63	659.26 622.25	E ₈	100 99	5274.0 4978.0
D_2	26 25	73.416 69.296	D ₅	62 61	587.33 554.37	D ₈	98 97	4698.6 4434.9
C_2	24	65.406	C ₅	60	523.25	C ₈	96	4186.0
B ₁	23 22	61.735 58.270	B ₄	59 58	493.88 466.16	B ₇	95 94	3951.1 3729.3
A ₁	21 20	55.000 51.913	A ₄	57 56	440.00 415.30	A ₇	93 92	3520.0 3322.4
G ₁	19 18	48.999 46.249	G ₄	55 54	392.00 369.99	G ₇	91 90	3136.0 2960.0
F₁	17	43.654	F ₄	53	349.23	F ₇	89	2793.8
E ₁	16 15	41.203 38.891	E ₄	52 51	329.63 311.13	E ₇	88 87	2637.0 2489.0
D ₁	14 13	36.708 34.648	D ₄	50 49	293.66 277.18	D ₇	86 85	2349.3 2217.5
C ₁	12	32.703	C ₄	48	261.63	C ₇	84	2093.0
B ₀	11 10	30.868 29.135	B ₃	47 46	246.94 233.08	B ₆	83 82	1975.5 1864.7
A ₀	9 8	27.500 25.957	A ₃	45 44	220.00 207.65	A ₆	81 80	1760.0 1661.2
G ₀	7 6	24.500 23.125	G ₃	43 42	196.00 185.00	G ₆	79 78	1568.0 1480.0
F_0	5	21.827	F ₃	41	174.61	F_6	77	1396.9
E _{0.}	4 3	20.602 19.445	E ₃	40 39	164.81 155.56	E ₆	76 75	1318.5 1244.5
D ₀	2 1	18.354 17.324	D_3	38	146.83 138.59	D ₆	74 73	1174.7 1108.7
Co	0	16.352	C_3	36	130.81	C ₆	72	1046.5