Integration is a mathematical technique for converting from one
dimension to another one, e.g., from acceleration to velocity:

Example: while acceleration can be expressed with the dimension
meter per second squared [m/s?], velocity would have the dimension
meter per second [m/s]. In order to convert from acceleration to
velocity, the acceleration has to be integrated with respect to time
(t) with dimension second [s]. This is written:

Velocity + C = jAcceleration d(t),

where t stands for time, d(-) implies “as derivative of”, and C is a
constant term (also with dimension [m/s]).

Notice: integration always implies the inclusion of a constant term,
which defines the boundary condition (here it is the starting velocity
before acceleration takes place).

In the present case a further integration (of Velocity + C) with
respect to time would have given position (including a constant
starting position) as the result, with the dimension meter, [m].

The inverse of integration is differentiation. After a function is
differentiated you end up with its derivative.

E.g., non-zero acceleration is the derivative of velocity changing as
function of time, while non-zero velocity is the derivative of position
changing with respect to ditto. The integral of zero acceleration is in
principle a constant velocity, due to the constant term, etc.

Notice: because derivation removes any initial boundary constant,
the corresponding integral is not uniquely defined unless that
constant is known. On the other hand, the derivative remains the
same and is uniquely defined, regardless of any initial constant.

Graphic example:

In Fig. 1 below, example plots of acceleration, velocity, and position
are shown for a given case. If we start with the middle panel,
velocity, we see that the slope of the curve (exemplified by red lines,
tangential to the velocity curve—with dimension m/s per second)
for the most part varies with time. Its derivative, acceleration, is no
more than a description of this variation. To go from acceleration to
velocity (i.e., to integrate the acceleration) we may imagine how the
area (marked yellow) below the acceleration curve between time
zero and an increasing t changes as t runs from 0 to 6 seconds.
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Figure 1: See text



The velocity curve describes this development of area change plus a
constant starting velocity, C; of 0.5 meter per second (marked
darker yellow), which was invisible in the acceleration plot. Between
t = 6 and 11 seconds, a negative acceleration takes place, and the
area between the acceleration curve and the zero line now has to be
deducted from the acquired velocity present a time t = 6. We thus
notice that from this point of time on, the velocity is decreasing in
the middle plot even though the corresponding acceleration is
increasing.

To calculate how far the moving object did reach during these
eleven seconds, we have to integrate once more, which in
mathematical semantics may be written:

position = fftlzlo acceleration d(t)d(t).

Once again we calculate the accumulated area under the curve, this
time the velocity curve, to obtain position. And, since the given
initial position was 2 meters rather than zero, we have to add
another constant term C, = 2 m to the accumulated area change. We
experience that during the eleven seconds, the object moved from
position 2 m to position 15.6 m, a stretch of 13.6 meters.



